
GUCON: A Generic Graph Pattern based Policy
Framework for Usage Control Enforcement

Ines Akaichi1[0000−0002−6020−5572], Giorgos Flouris2[0000−0002−8937−4118], Irini
Fundulaki2[0000−0002−4812−9896], and Sabrina Kirrane1[0000−0002−6955−7718]

1 Institute for Information Systems and New Media, WU, Vienna, Austria
name.lastname@wu.ac.at

2 Institute of Computer Science, FORTH, Heraklion, Greece
{fgeo,fundul}@ics.forth.gr

Abstract. Robust Usage Control (UC) mechanisms are necessary to pro-
tect sensitive data and resources, especially when these are distributed across
multiple nodes or users. Existing solutions have limitations in expressing and
enforcing usage control policies due to difficulties in capturing complex require-
ments and the lack of formal semantics necessary for automated compliance
checking. To address these challenges, we propose GUCON, a generic policy
framework that allows for the expression of and reasoning over granular UC
policies. This is achieved by leveraging the expressiveness and semantics of
graph pattern expressions, as well as the flexibility of deontic concepts. Ad-
ditionally, GUCON incorporates algorithms for conflict detection, resolution,
compliance and requirements checking, ensuring active policy enforcement. We
demonstrate the effectiveness of our framework by proposing instantiations us-
ing SHACL, OWL and ODRL. We show how instantiations provide a bridge
between abstract formalism and concrete implementations, thus allowing ex-
isting reasoners and implementations to be leveraged.

Keywords: Usage Control · Policy · Deontic Rules · Reasoning · Enforcement.

1 Introduction

In emerging decentralized environments, such as data spaces, or social linked data1,
the distribution of data across multiple nodes and its accessibility to numerous users
raises various concerns. These concerns encompass issues related to privacy, especially
in relation to the sharing of personal data; questions surrounding ownership and
control of data concerning creative digital work; and notably, the risk of data misuse
for purposes that deviate from the original intent. To address these concerns, policy-
based UC emerges as an extension of access control, providing a technical instrument
to manage not only resource access in terms of permissions and prohibitions but also
future data usage defined by obligations and dispensations. UC serves as an umbrella
term encompassing access control, data privacy protection, copyright, and various
legislative and institutional policies (e.g., the General Data Protection Regulation
(GDPR)[12] and the new copyright legislation [13]).

In order to specify UC policies, several policy languages and frameworks have
been proposed, focusing on access control, privacy, or trust management, such as
Rei [17], Protune [3], KAoS [26], and the SPECIAL policy language [5]. These lan-
guages are designed to meet the specific requirements of their respective domain areas.
However, most standard and well-known languages, such as the Open Digital Rights
Language (ODRL)[27] lack formal semantics for specifying or configuring enforcement
mechanisms or ensuring policy adherence. Although there are languages with formal
semantics that address reasoning over specific deontic concepts, they may not cover
the complete range of required concepts in UC [7, 21, 16]. Furthermore, in general,
there is a lack of full support for policy-specific tasks such as compliance checking,

1 Social Linked Data: https://solidproject.org/

2 I. Akaichi et al.

consistency checking, or requirement checking [18]. Notably, the presence of diverse
policy languages can also lead to interoperability issues in distributed environments.

In this paper, we propose GUCON, a Generic Graph Pattern based Policy Frame-
work for Usage Control enforcement. GUCON introduces an abstract structure with
formal and implementable semantics for policy specification, and describes algorithms
for policy-specific reasoning tasks. Policies are specified using conditional deontic rules
based on graph patterns and deontic concepts (permissions, prohibitions, obligations,
and dispensations), offering flexibility in expressing general UC restrictions, while the
formalization of policy rules is based on the formal semantics of graph patterns [22].
In GUCON, we also introduce the concept of state of affairs, which captures domain
knowledge and events, and serves as the basis for reasoning about, and enforcing
UC policies. Using GUCON, diverse types of usage control policies can be explicitly
defined and effectively enforced, owing to the adaptable nature of graph patterns
and the formal implementable semantics that underlie the framework. To assess its
usefulness and effectiveness, we demonstrate how to instantiate GUCON using recog-
nized recommendations from the World Wide Web Consortium (W3C), namely the
Shape Constraint Language (SHACL)2, the Web Ontology Language 2 (OWL 2)3,
and ODRL4. This enables us to leverage their existing implementations and bridge
the gap between GUCON’s abstract formalism and concrete implementations.

The remainder of the paper is structured as follows: Section 2 discusses related
work. Section 3 presents the necessary background. Section 4 introduces the building
components of our framework specification, covering policies and the state of affairs
and their semantics, while Section 5 describes algorithms for policy-specific tasks,
namely compliance, consistency, and requirements checking. In Section 6, we demon-
strate the usefulness and effectiveness of our framework by instantiating it using
SHACL, OWL 2, and ODRL. Finally, Section 7 summarizes the paper and discusses
future work.

2 Related Work

Several policy languages/models have been proposed to address UC. UCON [21] is an
abstract model that extends access control with the concepts of decision continuity
and attribute mutability. Although several formalisms have been suggested for UCON,
and attempts have been made to include it in standard representation languages [19,
15, 9], there is currently no established reference or standard policy specification and
implementation for UCON. As a result, UCON has not gained widespread adoption as
a UC model in the industry. Another language, the Obligation Specification Language
(OSL) formalized in Z [16], is utilized to express mainly conditional prohibitions and
obligations but lacks support for dispensations. While OSL offers technical models for
policy enforcement of obligations, it lacks provisions for consistency checking or pol-
icy querying. DUPO [7] is a policy language that employs defeasible logic to express
permissions, prohibitions, and obligations. The language facilitates policy compari-
son by matching user requests for data access against DUPO polices, resulting in
either permitting or prohibiting access. Additionally, the language supports consis-
tency checking. However, reasoning over obligations is not explicitly defined in the
current understanding of DUPO.

In the realm of the semantic web community, researchers have put forth various
general policy languages and frameworks, including Rei [17], Protune [3], and KAoS
[26]. These languages, which are grounded in knowledge representation languages,
primarily concentrate on specifying and reasoning about access control and trust
management, rather than UC. Specifically, the primary focus of these works is on

2 SHACL, https://www.w3.org/TR/shac
3 OWL 2, https://www.w3.org/TR/owl2-prim
4 ODRL, https://www.w3.org/TR/odrl-model

GUCON 3

permission checking, while aspects such as compliance checking with regard to obli-
gations and dispensations are not addressed. Furthermore, as noted in [6]’s analysis,
these languages may encounter challenges related to undecidability in certain policy-
related tasks. Among the existing proposals, the most closely related to our work from
a specification point of view is AIR [18], a language designed to facilitate accountable
privacy protection in web-based information systems. AIR employs rules and graph
patterns represented in N3. However, it should be noted that AIR was not specifically
devised for UC, lacks deontic concepts, and does not encompass consistency checking
or policy querying as integral components.

More recent studies proposed policy languages tailored to privacy, such as the
SPECIAL policy language, which was specifically designed to facilitate privacy poli-
cies by utilizing decidable fragments of OWL [5]. However, this language primarily
focuses on expressing authorizations and is constrained by the requirements imposed
by GDPR. Another notable language is ODRL [27], which is based on a rich RDF
model and vocabulary but lacks formal semantics.

3 Preliminaries

In order to specify the main components of our framework, we rely on the syntax and
semantics of graph patterns expressions presented in [22]. Throughout the paper, we
assume two pairwise disjoint and infinite sets I and L to denote respectively Interna-
tionalized Resource Identifiers (IRIs) and literals. We denote by T the union of I ∪L.
We introduce the concepts of subject s, property p, and object o to form subject-
property-object expressions, called Resource Description Framework (RDF) triples.
A triple is defined as (s, p, o) ∈ (I)× (I)× (I ∪L). Note that blank nodes are omitted
for simplicity. A set of RDF triples form an RDF graph. We assume additionally the
existence of an infinite set V of variables disjoint from the above sets. As a notational
convention, we will prefix variables with“?”(e.g., ?x, ?y).

Syntax of Graph Patterns. The definition of graph pattern expressions is based
on triple patterns. A triple pattern is defined as (sp, pp, op) ∈ (I ∪V)× (I ∪V)× (I ∪
L ∪ V). The variables occurring in a graph pattern G are denoted as var(G).

Definition 1 (Graph Pattern). A graph pattern is defined recursively as follows:

– A triple pattern is a graph pattern.
– If G1 and G2 are graph patterns, then (G1 AND G2), (G1 OPT G2), (G1 UNION

G1), (G1 MINUS G2) are graph patterns.
– If G is a graph pattern and R is a filter expression, then (G FILTER R) is a graph

pattern. A Filter expression is constructed using elements of the sets I ∪ L ∪ V ,
logical connectives (¬,∧,∨), inequality symbols (<,≤,≥, >), equality symbol (=),
plus other features (see [23] for a complete list).

Semantics of Graph Patterns. The semantics of graph pattern expressions are
defined based on a mapping function µ, such as µ : V → T . For a triple pattern t, we
denote by µ(t) the triple obtained by replacing the variables in t according to µ. The
domain of µ, dom(µ), is the subset of V where µ is defined.

Definition 2 (Evaluation of a Graph Pattern). Let D be an RDF graph over T .
Mapping a graph pattern against D is defined using the function [[.]]D, which takes a
graph pattern expression and returns a set of mappings Ω.

Two mappings µ1 and µ2 are said to be compatible, i.e., µ1 ∼ µ2 when, for all
x ∈ dom(µ1) ∩ dom(µ2), it is the case that µ1(x) = µ2(x). The evaluation of a
compound graph pattern G1 ×G2 is defined as follows:
[[G1 AND G2]] = Ω1 ▷◁ Ω2 = {µ1 ∪ µ2 |µ1 ∈ Ω1, µ2 ∈ Ω2, µ1 ∼ µ2}
[[G1 UNION G2]] = Ω1 ∪Ω2 = {µ1 ∪ µ2 |µ1 ∈ Ω1 ∪ µ2 ∈ Ω2, µ1 ∼ µ2}
[[G1 OPT G2]] = Ω1 ▷◁ Ω2 = (Ω1 ▷◁ Ω2) ∪ (Ω1/Ω2), where
Ω1/Ω2 = {µ|µ ∈ Ω1 ∧ ∄µ′ ∈ Ω2, µ ∼ µ′}

4 I. Akaichi et al.

4 Usage Control Framework Specification

In this section, we provide an in-depth analysis of the fundamental constituents of
our framework, namely knowledge bases (KBs) and usage control policies (UCPs).
We also present a motivating use case scenario that guides our analysis and describes
the address registration process in Austria.

4.1 Motivating Use Case Scenario

Assume the address registration process that exists in Austria, which is a legal re-
quirement for all those that change their normal residence to Austria. The address
registration process results in the issuing of a registration confirmation, which serves
as official proof of residence, necessary for banking, voting, etc. Specifically, residents
in Austria must register their address at a local registration office within three days
when permanently changing residence or moving from a foreign country. This process
requires completing a registration form with personal information and obtaining the
signature of the property owner. In the event that a person permanently (or temporar-
ily) stays in a hotel, they may request a signature from the hotel as proof of their stay.
Temporary visitors for tourism purposes are exempt from this requirement. Failure to
provide a registration confirmation may result in ineligibility to open a bank account
or vote, among other things.

4.2 Specification of KBs and UCPs

In our framework, KBs are used to store domain events that have already occurred
and general knowledge about the domain and related entities, while UCPs are used to
specify imposed restrictions on resource usage. Below, we present a detailed syntactic
specification of these components.

Knowledge Bases. We assume the existence of a certain set of triples that represent
the current state of affairs or knowledge about the world, called the KB.

Definition 3 (Knowledge Base). A KB, denoted as K, is an RDF graph describing
the set of actual knowledge.

A KB stores facts related to subjects, which can be either in the form of general
knowledge (e.g., Alice is a person) or events that have occurred (e.g., Alice registered
her address), which refer to the execution of an action.

Usage Control Policies. We assume three sets, N (entity names), C (action names),
and R (resource names), such that N , C, R ⊆ I. We consider a special type of RDF
triples, which are generated by the three sets N , C, and R. An RDF triple (n, c, r) ∈
(N) × (C) × (R) is called an action. Let us further suppose the presence of disjoint
sets Vn, Vc, Vr representing variables from the sets N , C, R respectively, such that
Vn, Vc, Vr ⊆ V . A UCP consists of a set of rules that govern the behavior of entities
with regard to resource usage, specifying what actions are permitted, prohibited,
required, or optional. Deontic logic, which deals with permissions, obligations, and
related concepts, provides a suitable framework for representing and reasoning about
UCPs [10]. As part of our framework, the specification of usage control rules (UCRs)
is based on the following deontic operators: permissions or allowance A, prohibitions
P, obligations O, and dispensations D that denote optionality [11]. In the context of
an action (n, c, r), these operators have the following meanings:

– A(n, c, r): indicates that an entity n is permitted (allowed) to perform an action
c over a resource r.

– P(n, c, r): indicates that an entity n is prohibited from performing an action c
over a resource r.

GUCON 5

– O(n, c, r): indicates that an entity n is obliged to perform an action c over a
resource r.

– D(n, c, r): indicates that an entity n is exempt from performing an action c over
a resource r.

In practice, we will allow variables to be present in the n, c, r positions (e.g., ?entity
:request ?resource), to allow generally applicable restrictions to be expressed, and we
refer to such a tuple as an action pattern defined as a triple (np, cp, rp) ∈ (N ∪ Vn)×
(C ∪ Vc) × (R ∪ Vr). We denote by AP the set of all action patterns.

A deontic pattern can be defined as follows:

Definition 4 (Deontic Pattern). Let D = {A,P,O,D} denote the deontic opera-
tors of Permission, Prohibition, Obligation, and Dispensation. A deontic pattern is
a statement of the form da, where d ∈ D and a ∈ AP.

Example 1 (Deontic Pattern). The tuple A(?x, :request, ?y) states that an “entity”
?x is allowed to request a “resource” ?y.

Some deontic patterns apply under specific conditions, giving rise to conditional
deontic rules [2] (e.g, to be “allowed” to “request” a resource “signature”, one needs
to be a “person” staying permanently in a hotel, etc.). These rules not only prescribe
the permissible or impermissible actions that entities may undertake with resources,
but also the corresponding obligations or dispensations, under specific conditions.
A condition is modeled based on a graph pattern expression. Following Definition
1, AND (often abbreviated using ”.”) and UNION are used to express conjunctive
and disjunctive (respectively) conditions. The operator OPT behaves similarly to the
outer join operator in SQL, whereas MINUS is used to express conditions involving
negation (e.g., to identify persons without a registration confirmation one could write
(?x, :type, :Person) MINUS (?x, :hasA, :registrationConfirmation)). Lastly, the filter
operator is used to express different conditions pertaining to specific sub-elements of
a triple. Using a deontic pattern, graph pattern, and the operator ⇝ in-between, a
conditional deontic rule, simply called a UCR, can be defined as follows:

Definition 5 (Usage Control Rule). A UCR is of the form: cond ⇝ da, where
cond is a graph pattern, and da is a deontic pattern. We denote by R the set of all
UCRs.

A UCR can be read as follows: If the condition (cond) is satisifed by the KB, then
the deontic pattern (da) may/must not/must/need not be satisfied. Furthermore, it
is assumed that for a given rule, the condition var(a) ⊆ var(cond) holds. Violating
this restriction would create an infinite number of deontic requirements, making the
model unusable in practice.

Example 2 (Usage Control Rule). The following requirement from our motivating use
case scenario: “In the event that a person permanently stays in a hotel, they may
request a signature from the hotel as proof of their stay”, can be expressed using the
following UCR:

(?x, :type, :Person). (?x, :stayIn, ?l).
(?x, :hasStayDuration, :permanent). (?l, :type, :Hotel).
(?l, :hasManagementUnit, ?m). (?m, :type, :HotelManagement).
(?y, :hasSignatory, ?m). (?y, :type, :Signature)
⇝A(?x, :request, ?y)

The requirements described in our scenario can be expressed in the same general form
in Definition 5. The various requirements expressed as UCRs form a UCP.

Definition 6 (Usage Control Policy). A set of UCRs R ⊆ R is called a UCP.

6 I. Akaichi et al.

4.3 Semantics of UCPs

To effectively perform the reasoning tasks in our framework, it is imperative that
we have the ability to reason about the rules governing UCPs. This is primarily
accomplished through the process of evaluating these rules against the KB, resulting
in the identification of active rules. Active rules are characterized by having a satisfied
condition, ensuring their applicability in the given KB.

Definition 7 (Satisfied condition). Let K be a KB over T, P a UCP, and a rule
r ∈ P , such that r = cond ⇝ da. A condition cond is satisfied for µ, denoted by
K ▷ cond, if and only if there exists a mapping µ such that µ ∈ [[cond]]K .

Note that multiple mappings may be used to satisfy a given rule.

Definition 8 (Active Rule). A rule r ∈ P , such that r = cond⇝ da, is active for
a mapping µ, if and only if cond is satisfied for µ.

Note that a rule may be active for multiple mappings. Based on the definition of an
active rule, a UCP P is called active if any of its rules are active. Otherwise, It is
called inactive. Furthermore, it is often important to identify the entity/entities for
which a rule applies:

Definition 9 (Applicable Rule). Consider an active rule r ∈ P such that r =
cond⇝ da, a denotes (n, c, r), n ∈ Vn ∪N , and there is some no ∈ N . We say that r
is applicable for n0 with respect to µ if and only if µ(n) = n0.

Based on this definition, we call a UCP P applicable for n0 if any of its rules are
applicable. Otherwise, It is called non-applicable.

5 Reasoning Tasks

Our UC framework leverages KBs and UCPs to support three primary tasks for man-
aging and monitoring UCPs: consistency checking, compliance checking, and require-
ments checking. Consistency checking ensures that policies do not contain conflicting
or contradictory rules and are logically consistent. Compliance checking aims to ver-
ify that the actions of a system and its users, which are stored in KBs, conform to a
predefined set of rules and policies, and to identify any instances of non-compliance.
Finally, requirements checking helps to ensure that users of systems are informed
of their up-to-date rights and obligations specified in policies. In the following, we
provide a detailed overview of each reasoning task, related algorithms5, and concepts.

5.1 Consistency Checking

Consistency checking aims to identify and resolve conflicts among policy rules, with a
focus on detecting and resolving conflicting rules involving deontic dilemmas, which
are considered to be application-independent [20]. Deontic dilemmas occur when pos-
itive operators (permissions and obligations) in an active rule and negative operators
(prohibitions and dispensations) in another active rule refer to the same action triple
a. Abstracting from the interplay between positive and negative operators, we mainly
focus on the following types of deontic dilemmas defined in [20]: Oa and Pa; Aa and
Pa; Oa and Da.

Definition 10 (Conflicting Rules). Let r1, r2 ∈ P , such that r1 = cond1 ⇝ d1a1,
r2 = cond2 ⇝ d2a2. Let µ1 be a mapping in [[cond1]]K , µ2 be a mapping in [[cond2]]K ,
and µ1 ∼ µ2. We say that a pair of rules (r1, r2) are conflicting with respect to µ,
such that µ = µ1 ▷◁ µ2, if and only if the following conditiofns hold:

5 The functions invoked in the algorithms defined below are available here: https://github.com/
Ines-Akaichi/GUCON-Instantiation/blob/main/GUCON-Appendix.pdf

GUCON 7

Input: Policy P , Knowledge Base K, Meta-policy MP
Output: Policy P̂
begin

/* n is the size of P */
for i=1 to n do

Ω = GetMappings(P [i].cond,K)
if Ω is not empty then

foreach µ in Ω do

P̂ .insert (µ(P [i]))

if P̂ is not empty then
for i=1 to n-1 do

for j=i+1 to n do
/* If two rules are conflicting */

if (P̂ [i].a == P̂ [j].a) and (IsOpposite(P̂ [i].d, P̂ [j].d) then

temp = Compare(P̂ [i], P̂ [j], MP)
if temp == 1 then

/* P̂[j] ⪯ P̂[i] */

/* P̂[i] does not change */

P̂ [j].cond = Minus(P̂ [j].cond, P̂ [i].cond)

else if temp == 2 then

/* P̂[i] ⪯ P̂[j] */

/* P̂[j] does not change */

P̂ [i].cond = Minus(P̂ [i].cond, P̂ [j].cond)

else if temp==0 then

/* P̂[i] ̸⪯ P̂[j] and P̂[j] ̸⪯ P̂[i] */
quit ();

return P̂

Algorithm 1: Dynamic Conflict Detection and Resolution

1. d1 and d2 present a deontic dilemma
2. µ(a1) = µ(a2)

We say that the pair (r1, r2) are conflicting if they are conflicting for some µ. We
denote by CR the set of all conflicting rules in P .

When conflicts are detected in a policy, it is said to be inconsistent. In this case, a
decision must be made on how to restore its consistency. A UCP P is called consistent,
if and only if, there is no r1, r2 ∈ P such that r1 conflicts with r2. Otherwise, It is
called inconsistent.

Using a conflict resolution strategy automatically addresses policy conflicts and
restores consistency. One prevalent strategy for resolving modality conflicts is estab-
lishing a precedence relationship between rules. Principles for establishing precedence
include giving negative policies priority over positive ones, prioritizing specific policies
over general ones, and prioritizing new laws over old ones. The specificities of each
strategy are outlined in [20]. Our framework incorporates a meta-policy that defines
the conflict strategy and the corresponding conflicting rules. Precedence is expressed
using the binary operator ⪯. That is, for each conflicting pair of rules (r1, r2), if
r1 ⪯ r2, then r2 (stronger rule) takes precedence over r1 (weaker rule).

Definition 11 (Usage Control Meta-policy). A usage control meta-policy is a
tuple ⟨CR,⪯⟩, such that ⪯⊆ CR2 is a partial pre-order over pairs of rules in CR. For
any pair of rules (r1, r2) and (r2, r3) in CR, the relation ⪯ satisfies: a) reflexivity:
r1 ⪯ r1, i.e. every element is related to itself; b) transitivity: if r1 ⪯ r2 and r2 ⪯ r3
then r1 ⪯ r3.

Note also the use of ⪯ instead of ≺: as usual, we will write r1 ≺ r2, as a shorthand
for r1 ⪯ r2 and r2 ̸⪯ r1. An example of negative policies override positive ones can
be expressed as follows:

Example 3 (Prohibition overrides Permission). This strategy can be formally ex-
pressed as follows: for any two rules r1 = cond1 ⇝ Pa1, r2 = cond2 ⇝ Aa2, such that
a1 = a2, it holds that r2 ⪯ r1.

8 I. Akaichi et al.

Input: Policy P , Knowledge Base K, IRI iri
Output: Boolean compliant
begin

compliant = true
i = 1
/* n is the size of P */
while i ≤ n do

µ = GetMapping (P [i].cond, K, iri)
if µ is not empty then

if P [i].d == O then
if Not Exists(µ(P[i].a), K) then

compliant = false

break

if P [i].d == P then
if Exists(µ(P[i].a), K) then

compliant = false

break

return compliant

Algorithm 2: Ex-post Compliance checking

Generally speaking, repairing the consistency of policies involve detecting conflicting
rules and then resolving them based on the precedence strategy specified in the corre-
sponding meta-policy. To resolve these conflicts, changes are made to the weaker rule
defined based on the precedence strategy specified in the corresponding meta-policy.
Specifically, the resolution involves subtracting (using MINUS) the condition in the
stronger rules from the condition in the weaker rule. This operation yields a modified
version of the weaker rule that no longer conflicts with the stronger rule, allowing its
application in the current context. In cases where no precedence is defined, conflicts
remain unresolved. This means that conflicting rules without a designated precedence
relationship would persist, necessitating manual intervention for resolution [20].
To automate the process of consistency checking and repairing in policies, we propose
Algorithm 1, which is a systematic approach to detecting and resolving conflicting
rules. The algorithm involves four main steps: (1) It determines an active policy
based on a given KB by evoking the function ReturnMappings that evaluates each
rule in the policy against a given KB and returns a set of mappings. The resulting
mappings are used to populate the inactive rules. (2) Next, each pair of active rules
in the returned policy is examined to identify any conflicts. This is done by checking
whether the pair has equal actions (triples) and features a deontic dilemma, using the
IsOpposite function. (3) If the algorithm detects any conflicting pairs, the function
Compare is evoked to decide which rule holds precedence over which rule. (4) Finally,
if a precedence is defined between two rules, the meta-policy is applied by invoking
the function Minus, which apply necessary changes to the weaker rule. In general, the
verification of active rules may be carried out each time the KB is updated.

5.2 Compliance Checking

We propose ex-post compliance of a given KB against a policy or a set of policies.
Compliance checking is capable of identifying any breaches or non-compliant behavior
of an entity, which is identified by an IRI, thereby ensuring the proper and secure
operation of the system. The criteria for determining whether a KB is compliant with
a given policy can vary depending on the specific rule being considered, as well as the
KB and mappings used to interpret that rule. Note that we do not define compliance
for inconsistent policies, however, if we are given any UCP, Algorithm 1 needs to be
initially performed, and then compliance checking can be carried out.

Definition 12 (KB Compliance Against a Rule). Given a KB K and a rule
r ∈ P , such that P is consistent, we say that K complies with r, denoted by K ▷ r, if
and only if any of the following is true:

– If r is of the form cond → Aa, then K ▷ r

GUCON 9

Input: Policy P , Knowledge Base K, IRI iri, Deontic d
Output: Policy Preq

begin
/* n is the size of P */
for i =1 to n do

µ = GetMapping (P [i].cond, K, iri)
if µ is not empty then

if P[i].d == d then
if d == O then

if Exists(µ(P [i].a), K) then
i = i + 1

else
Preq.insert(µ(P [i]))

else
Preq.insert(µ(P [i]))

return Preq

Algorithm 3: Requirements Checking

– If r is of the form cond → Pa and for all µ such that r is applicable for µ, it holds
that µ(a) /∈ K

– If r is of the form cond → Oa and for all µ such that r is applicable for µ, it
holds that µ(a) ∈ K

– If r is of the form cond → Da, then K ▷ r

Based on this definition, a KB K is said to be compliant with a UCP P , denoted
by K ▷ P , if and only for each applicable rule r ∈ P , K ▷ r. Otherwise, It is called
non-compliant.

Automatically checking for compliance between a KB and an applicable policy,
with respect to a given IRI, is performed using Algorithm 2, which employs a two-
step approach: (1) The first step of the algorithm involves verifying the applicability
of each rule for a given IRI by invoking the ReturnMapping function. (2) The second
step involves evaluating the KB for compliance with each applicable rule, utilizing the
Exists function as per the criteria defined in Definition 12. Notably, the algorithm
halts as soon as a non-compliant rule is identified.

5.3 Requirements Checking

Requirement checking is a task that enables an entity to query a policy and receive
information regarding their applicable deontic rules. This task ensures that entities
are continuously aware of the applicable permissions, prohibitions, obligations, and
dispensations relevant to their activities.

Algorithm 3 facilitates the retrieval of specific requirements, in accordance with
an applicable policy, for a given IRI and a KB. The algorithm operates through a two-
step process: (1) In the first step, It verifies the applicability of each rule for a given
IRI by invoking the ReturnMapping function. This step ensures that only applicable
rules are considered in the subsequent requirement checking process. (2) In the second
step, It checks each applicable rule to determine whether it is in accordance with the
requested deontic, adding it to the list of requested requirements as appropriate.
For requested obligations, the algorithm first checks whether a given obligation has
already been executed by invoking the Exists function. If the obligation has not been
executed, the respective rule will be added to the list of requirements.

6 Assessment

In order to demonstrate the effectiveness and suitability of our abstract framework in
expressing and reasoning over UCPs in practical contexts, we provide instantiations
of our framework using three widely recognized recommendations from the W3C

10 I. Akaichi et al.

Fig. 1. The UCP Core Ontology and Profile. Dark blue: core model; Light blue: profile

organization, namely, SHACL, OWL 2, and ODRL. These instantiations allow us to
showcase how can we effectively map the abstract concepts in our framework into
concrete implementations.

In what follows, we first introduce the Usage Control Policy (UCP) ontology and
profile, which respectively represent our framework specification and motivating use
case scenario, and which serve as the basis for the instantiations performed below.
Both the UCP core ontology and the UCP profile are employed in the instantiation
process using SHACL and OWL. However, for the ODRL language, we express our
motivating scenario by constructing an ODRL profile in accordance with the ODRL
specification, which is described in detail below. Finally, we assess the adequacy of
instantiations and reasoning capabilities of each of the languages. All the details
describing the various instantiations are provided on our GitHub repository6,7.

6.1 The Usage Control Policy Ontology and Profile

Herein, we present the UCP core ontology that defines essential concepts for mod-
eling a UCP based on our framework specification. The core ontology is shown in
dark blue in Figure 1. We use the ucp prefix to identify our <http://example.

org/ucp/> ontology. The UCP core ontology includes the following main classes:
ucp:Policy, ucp:Rule, ucp:Action, ucp:Resource, and ucp:Entity. A ucp:Rule

can be a ucp:Permission, ucp:Prohibition, ucp:Obligation, or ucp:Dispensation.
Connections between a ucp:Rule and an ucp:Action, ucp:Resource, and ucp:Entity

are established using corresponding OWL properties. A policy can consist of one or
more rules and is linked to the ucp:Rule class based on the rule type, using prop-
erties like ucp:hasPermission, ect. The ontology incorporates additional constraints
and restrictions, but they are not discussed in details in this paper. For instance,
ucp:hasPermission has a domain of ucp:Policy and a range of ucp:Permission.
The deontic classes are also owl:disjointWith each other. We also introduce the
UCP profile <http://example.org/ucp:profile:01/> described with the ucpr pre-
fix, which includes the minimal concepts needed for modeling Example 2 from our
motivating scenario, as shown in Figure 1 with an overview in light blue. It defines a
foaf:Person of type ucp:Entity staying at a particular ucpr:Location for a spe-
cific period. ucpr:Hotel is of type ucpr:Location and has a ucpr:HotelManagement

unit. The profile includes a ucpr:request as an instance of the ucp:Action class,
and a ucpr:Signature as a ucp:Resource involving a signatory of type ucp:Entity.

6 GitHub, https://github.com/Ines-Akaichi/GUCON-Instantiation
7 The following prefixes are used throughout Section 6: rdf:<http://www.w3.org/1999/02/
22-rdf-syntax-ns#>; rdfs:<http://www.w3.org/2000/01/rdf-schema#>; owl:<http://www.w3.org/2002/
07/owl#>; foaf:<http://xmlns.com/foaf/0.1/>; ex:<http://example.org/>

GUCON 11

6.2 Instantiation

Initially, SHACL was introduced to validate RDF graphs using specific conditions
called shapes. However, it has evolved to include advanced features like SHACL rules,
namely Triple and SPARQL rules. These rules allow for the derivation of inferred
triples, expanding SHACL’s capabilities beyond validation into a logical program-
ming language [24]. On the other hand, OWL is an ontology language designed for
the Semantic Web, with formally defined semantics. OWL 2 is the latest version,
offering various options that balance expressive modeling capabilities with efficient
computational reasoning [6]. In contrast, ODRL was developed to express policies for
digital content and services. It includes a core model and vocabulary that enables the
expression of profiles for different use cases [27].

Policy representation using SHACL. To express a UCR using SHACL-SPARQL, the
rule is defined as a sh:SPARQLRule identifier, bound to the special term $this.
The UCR is expressed through the sh:construct property using CONSTRUCT-
WHERE assertions in SPARQL. The deontic pattern is rewritten using the CON-
STRUCT operator as $this rdfs:subClassOf *DeonticClass*, where *DeonticClass*
can be one of the following ucp:Permission, ucp:Prohibition, ucp:Obligation,
or ucp:Dispensation. The entity, resource, and action are represented as a con-
junction of triples in the WHERE clause, using the identifier $this as the subject;
ucp:hasEntity, ucp:hasAction, ucp:hasResource as properties; and the correspond-
ing values as objects. Graph pattern conditions can be added to the WHERE clause
alongside the other triples, using an AND connector. Using SHACL-SPARQL rules
preserves the expressivity of graph pattern conditions, allowing for more flexible and
detailed rule specifications. Example 2 formalized in SHACL is shown in Listing 1.1.

1 ex : Permiss ionRequestSignature
2 a sh : NodeShape ;
3 sh : ru l e [
4 a sh : SPARQLRule ;
5 sh : p r e f i x e s ex : , rd f : , ucp : , : ucpr ;
6 sh : cons t ruc t ”””
7 CONSTRUCT {
8 $ th i s r d f s : subClassOf ucp : Permiss ion . }
9 WHERE {

10 $ th i s ucp : hasAction ?x .
11 $ th i s ucp : hasEntity ?y .
12 $ th i s ucp : hasResource ? z .
13 ?x rd f : type ucp : Action .
14 ?x rd f s : l a b e l ” reques t ”@en .
15 ?y rd f : type f o a f : Person .
16 ?y ucpr : s tayIn ? l .
17 ?y ucpr : hasStayDuration ex : permanent .
18 ? l rd f : type ucpr : Hotel .
19 ? l ucpr : hasMangemetUnit ?m .
20 ?m rd f : type ucpr : HotelManagement .
21 ?z rd f : type ex : S ignature .
22 ? z ucpr : hasSignatory ?m . } ””” ;] .

Listing 1.1. Policy Representation using SHACL

Policy representation using OWL. To represent a UCR using OWL, the rule can be
described as follows: the deontic pattern of the rule is represented by an identifier (de-
noted by *id*) of type owl:Class, which is generated in a way that guarantees unique-
ness. The deontic operator is conveyed through the RDF triple representation as *id*,
rdfs:subClassOf, *DeonticClass*. *id* describes the entity, resource, and action of the
deontic pattern using owl:equivalentClass and owl:intersectionOf of restrictions
on the properties ucp:hasEntity, ucp:hasAction, and ucp:hasResource. These
properties can be recursively described using owl:hasValue or owl:allValuesFrom.
Mapping specific instances of type ucp:Entity, ucp:Resource, or ucp:Action de-
scribed using the graph pattern operators AND, UNION, OPT, FILTER, or MINUS
to the OWL representation can be performed as follows: the owl:intersectionOf

and owl:unionOf can be used to express respectively the operators AND and UNION.
The owl:complementOf property serves as a workaround to express OPT, while also
enabling the expression of soft negation to describe MINUS operations. It is important
to note that OWL does not explicitly represent the FILTER operator. Nevertheless,
constraints on properties and values can be expressed through OWL restrictions and
property assertions. Example 2 formalized in OWL is shown in Listing 1.2.

12 I. Akaichi et al.

1 ex : Permiss ionRequestSignature rd f : type owl : Class ;
2 r d f s : subClassOf ucp : Permiss ion ;
3 owl : equ ivantClass
4 [
5 rd f : type owl : Class ;
6 owl : i n t e r s e c t i onO f
7 ([
8 rd f : type owl : Re s t r i c t i on ;
9 owl : onProperty ucp : hasAction ;

10 owl : hasValue ucpr : r eques t]
11 [
12 rd f : type owl : Re s t r i c t i on ;
13 owl : onProperty ucp : hasResource ;
14 owl : al lValuesFrom [
15 rd f : type ucpr : S ignature ;
16 ucpr : s i gnato ry ucpr : HotelManagement]]
17 [
18 rd f : type owl : Res t r i c ton ;
19 owl : onProperty ucp : hasEntity ;
20 owl : al lValuesFrom [
21 rd f : type f o a f : Person ;
22 ucpr : s tayIn [
23 rd f : type ucpr : Hotel ;
24 ucpr : hasManagementUnit ucpr : HotelMangement ;] ;
25 ucpr : stayDuration ex : permanent ;]])] .

Listing 1.2. Policy Representation using OWL

Policy representation using ODRL. To address the requirements specific to our moti-
vating use case scenario, the first step involves extending the ODRL policy model by
creating a profile that represents our particular example. The following prefixes are
used to describe respectively the original model odrl:<http://www.w3.org/ns/odrl/
2/> and our profile odrlp:<http://example.org/odrl:profile:01/>. The profile
follows the design guidlines of the ODRL model, particularly, we employ an in-
stance odrlp:persons of type odrl:PartyCollection, while the class foaf:Person
is part of odrlp:persons. odrlp:Signature is a subclass of odrl:Asset, the ac-
tion odrlp:request is an instance of odrl:Action. The properties odrlp:stayIn,
odrlp:hasManagementUnit, odrlp:hasStayduration, and odrlp:hasSignatory are
defined similarly to the UCP profile. A more comprehensive description of the ODRL
profile can be found in our GitHub repository.

Within the ODRL, a UCR can be described using an identifier *id* of type
odrl:Set, which is generated in a way that guarantees uniqueness. The deontic pat-
tern of a UCR is described as follows: the deontic operator is specified through an
ODRL deontic property (e.g., odrl:permission), although it is important to note
that ODRL mainly covers permissions, prohibitions, and obligations. That means, It
is not possible to represent a UCR expressing a dispensation in ODRL without creat-
ing a new profile. The deontic property is linked to other concepts through properties
like odrl:assignee (corresponding to ucp:hasEntity), odrl:action (corresponding
to ucp:hasAction), and odrl:target (corresponding to ucp:hasResource). Describ-
ing the entity, action, and resource can be done using operators defined in ODRL
(e.g., odrl:refinement, odrl:leftOperand, odrl:rightOperand, odrl:operator).
Mapping specific instances of type ucp:Entity, ucp:Resource, or ucp:Action de-
scribed using the graph pattern operators AND, UNION, OPT, FILTER, or MINUS
to the ODRL representation can be performed as follows: the intersection or union of
patterns can be expressed using the operators odrl:and and odrl:or, respectively.
However, defining the OPT operator within the ODRL framework does not have
a clear workaround. For the FILTER operator, the properties odrl:leftOperand,
odrl:rightOperand, and odrl:operator can be used as a workaround. Negation
can be achieved using operators that belong to the class odrl:Operator, such as
odrl:neq (not equal) or odrl:isNoneOf (is none of). An ODRL formalization of
Example 2 is found in Listing 1.3.

1 ex : Permiss ionRequestSignature
2 a odr l : Set ;
3 odr l : p r o f i l e <http :// example . org / odr l : p r o f i l e :01/> ;
4 odr l : permiss ion
5 [
6 odr l : a s s i gne e
7 [
8 a odr l : Par tyCo l l e c t i on ;
9 odr l : source odr lp : persons ;

10 odr l : re f inement
11 [
12 odr l : and
13 [odr l : l e f tOperand odr lp : s tayIn ;

GUCON 13

14 odr l : operator odr l : eq ;
15 odr l : r ightOperand
16 [a odr lp : Hotel ;
17 odr lp : hasManagementUnit odr lp : HotelManagement ;] ;] ,
18 [odr l : l e f tOperand odr lp : hasStayDuration ;
19 odr l : operator odr l : eq ;
20 odr l : r ightOperand ex : permanent ;] ;]] ;
21 odr l : ac t i on odr lp : r eques t ;
22 odr l : t a rg e t
23 [a odr lp : S ignature ;
24 odr lp : hasSignatory odr lp : HotelManagement ;]] .

Listing 1.3. Policy Representation using ODRL

6.3 Usage Control Requirements Assessment

The implementation of our framework has demonstrated its versatility and adapt-
ability by successfully mapping it to different languages. This is achieved through the
strategic utilization of the inherent expressive capabilities present in each language.
In the following, we specifically assess two key aspects: (1) the adequacy of mapping
our framework to the different instantiations and (2) the reasoning over the given
policies by leveraging existing implementations of the defined languages.

Instantiation: Expressiveness. UCRs can be mapped directly to SHACL-SPARQL.
Additionally, SHACL-SPARQL leverages SPARQL operators and built-in functions,
making it expressive for policy specification. OWL is expressive and offers features
like conjunction, disjunction, and filtering through property restrictions. It also sup-
ports OPT and MINUS using the owl:complementOf construct. SHACL-SPARQL
and OWL require an ontology to express policy elements. Whereas ODRL is built
specifically to express policies by supporting mainly permissions, prohibitions, and
obligations, but lacks support for dispensations. ODRL provides conjunction, disjunc-
tion, and refinement operators that act as filters for conditions. A form of “Negation”
can be achieved using odrl:neq or odrl:isNoneOf. Whereas, It is not clear how
ODRL can support the OPT operator. Flexibility & extensibility. SHACL-SPARQL
and OWL offer flexibility and extensibility through ontologies. They can accommo-
date various requirements by defining new concepts and relationships in the ontol-
ogy. Whereas, ODRL’s flexibility and extensibility are achieved through profiles, en-
abling customization of the language for specific application domains. Unambiguous.
SHACL-SPARQL and OWL are declarative in syntax, promoting unambiguous policy
specifications, while ODRL’s syntax is designed to be intuitive, which aids in reduc-
ing ambiguity to some extent. Formal semantics. SHACL-SPARQL and particularly
SPARQL have clear formal semantics, making it well-defined and suitable for formal
reasoning. OWL has formal semantics defined by W3C, enabling reasoning and infer-
ence, whereas ODRL lacks explicitly defined formal semantics. Nonetheless, there is
an active w3c community group dedicated to defining formal semantics for ODRL8.
Finally and most importantly, the adoption of graph patterns formal semantics into
the specification of our policy rules provides a rigorous foundation for our frame-
work, which enables precise reasoning about policy rule interactions, conflicts, and
compliance, when combined with other representation languages.

Reasoning: One advantage of using representation languages like SHACL, OWL
2, and ODRL is their ability to leverage (and extend) existing engines for imple-
menting our framework reasoning tasks. In the domains of regulatory and privacy
compliance research, SHACL is used for representing privacy policies, i.e. permis-
sions, prohibitions, and obligations [1, 24], with the TopBraid9 engine being used to
assess compliance of user access request or user data processing against the SHACL
policies. Furthermore, and very recently, SHACL-ACL [25] has been introduced as
an extension of SHACL, focusing on access control in RDF knowledge graphs. The
validation process for access control involves checking whether SPARQL queries are
compliant with access control policies expressed in SHACL-ACL. This validation is

8 ODRL Formal Semantics, https://w3c.github.io/odrl/formal-semantics/
9 TopBraid SHACL, https://github.com/TopQuadrant/shacl

14 I. Akaichi et al.

carried out using a SHACL validator known as Trav-SHACL10. Various implemen-
tations of SHACL and its advanced features are available, and a full list of engines
can be found here11. Similarly, recent works [5, 4, 14] have utilized OWL 2 to express
privacy policies and employed off-the-shelf reasoners like Hermit, Pellet, and Racer
for compliance checking. As noted in [5], OWL 2 exhibits the advantage that all major
policy-reasoning tasks are decidable, and if policies adhere to OWL 2 profiles, they
are also tractable. Although ODRL lacks a standard enforcement engine, workarounds
have been proposed, such as translating ODRL policies into InstAL and perform com-
pliance verification using an answer set solver [10]. Furthermore, the current efforts
within a W3C working group to propose formal semantics for ODRL would represent
a significant advancement towards enabling the establishment of a standard imple-
mentation for the language [8].

7 Conclusion & Future Work

In this paper, we presented GUCON, a comprehensive framework that defines the
specifications of a KB designed to store factual knowledge, as well as UCPs used
to define UCRs. Our framework leverages the flexibility of deontic concepts and the
expressiveness and semantics of graph pattern expressions to capture general UCRs.
In addition, we have introduced algorithms for policy-based reasoning tasks, mainly,
consistency checking, compliance checking and requirements checking, which can be
accomplished by leveraging the semantics of UCPs and the KB. To demonstrate the
effectiveness of our framework, we showed how to instantiate our framework using
three different well-known languages. In doing so, we demonstrated not only the ex-
pressive power of our framework, but also its adaptability to other relevant languages.
This enables us to draw on existing literature and industry solutions supporting these
languages as a means of implementing our reasoning tasks.

Our paper leaves room for future work. While the majority of existing literature
and industrial solutions focus primarily on compliance checking as the main reasoning
task, a potential avenue for future research is to use one of these many implemen-
tations to study the integration of the remaining reasoning tasks and bring in our
formal semantics to these implementations, in particular consistency checking and re-
quirement checking. In addition, We also plan to investigate how can we facilitate the
mapping between our framework and the representation languages introduced herein
by implementing and evaluating automated translation algorithms. Finally, we plan
to evaluate our framework following its implementation based on performance and
security criteria, among other aspects.

Acknowledgements This work is funded by the European Union Horizon 2020 re-
search and innovation programme under the Marie Sk lodowska-Curie grant agreement
No 860801. Sabrina Kirrane is funded by the FWF Austrian Science Fund and the
Internet Foundation Austria under the FWF Elise Richter and netidee SCIENCE
programmes as project number V 759-N.

References

1. Al Bassit, A., Krasnashchok, K., Skhiri, S., Mustapha, M.: Policy-based automated
compliance checking. In: Rules and Reasoning: 5th International Joint Conference,
RuleML+RR 2021, Leuven, Belgium, September 13–15, 2021, Proceedings (2021)

2. Beller, S.: Deontic norms, deontic reasoning, and deontic conditionals. Thinking & Rea-
soning 14(4) (2008)

3. Bonatti, P., De Coi, J.L., Olmedilla, D., Sauro, L.: A rule-based trust negotiation system.
IEEE Transactions on Knowledge and Data Engineering 22 (2010)

10 Trav-SHACL, https://github.com/SDM-TIB/Trav-SHACL
11 https://book.validatingrdf.com/bookHtml011.html

GUCON 15

4. Bonatti, P., Ioffredo, L., Petrova, I., Sauro, L., Siahaan, I.: Real-time reasoning in owl2
for gdpr compliance. Artificial Intelligence 289 (2020)

5. Bonatti, P., Kirrane, S., Petrova, I., Sauro, L.: Machine understandable policies and gdpr
compliance checking. KI - Künstliche Intelligenz 34 (2020)

6. Bonatti, P.A.: Fast compliance checking in an owl2 fragment. In: Proceedings of the 27th
International Joint Conference on Artificial Intelligence (2018)

7. Cao, Q.H., Giyyarpuram, M., Farahbakhsh, R., Crespi, N.: Policy-based usage control
for a trustworthy data sharing platform in smart cities. Future Generation Computer
Systems 107 (2020)

8. Cimmino, A., Cano-Benito, J., Garćıa-Castro, R.: Practical challenges of odrl and poten-
tial courses of action. In: Companion Proceedings of the ACM Web Conference (2023)

9. Colombo, M., Lazouski, A., Martinelli, F., Mori, P.: A proposal on enhancing xacml with
continuous usage control features. In: Grids, P2P and Services Computing (2010)

10. De Vos, M., Kirrane, S., Padget, J., Satoh, K.: Odrl policy modelling and compliance
checking. In: Rules and Reasoning: Third International Joint Conference, RuleML+RR
2019, Bolzano, Italy, September 16–19, 2019, Proceedings (2019)

11. Dimishkovska, A.: Deontic logic and legal rules. Encyclopedia of the Philosophy of Law
and Social Philosophy (2017)

12. European Commission: 2018 reform of eu data protection rules
(2018), https://ec.europa.eu/commission/sites/beta-political/files/

data-protection-factsheet-changes_en.pdf

13. European Commission: 2021 reform of eu copyright protection rules (2021), https:

//ec.europa.eu/commission/presscorner/detail/en/IP_21_1807

14. Francesconi, E., Governatori, G.: Patterns for legal compliance checking in a decidable
framework of linked open data. Artificial Intelligence and Law 31(3) (07 2022)

15. e Ghazia, U., Masood, R., Shibli, M.A., Bilal, M.: Usage control model specification in
xacml policy language. In: Computer Information Systems and Industrial Management
(2012)

16. Hilty, M., Pretschner, A., Basin, D., Schaefer, C., Walter, T.: A policy language for
distributed usage control. In: Computer Security – ESORICS (2007)

17. Kagal, L.: Rei : A Policy Language for the Me-Centric Project. Tech. rep., HP Labs
(September 2002), http://www.hpl.hp.com/techreports/2002/HPL-2002-270.html

18. Khandelwal, A., Bao, J., Kagal, L., Jacobi, I., Ding, L., Hendler, J.: Analyzing the air
language: A semantic web (production) rule language. In: Web Reasoning and Rule
Systems (2010)

19. Lazouski, A., Martinelli, F., Mori, P.: Usage control in computer security: A survey.
Computer Science Review 4(2) (2010)

20. Lupu, E., Sloman, M.: Conflicts in policy-based distributed systems management. IEEE
Transactions on Software Engineering 25(6) (1999)

21. Park, J., Sandhu, R.: The uconabc usage control model. ACM Transactions on Informa-
tion and System Security 7 (2004)

22. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of sparql. In: The Se-
mantic Web - ISWC 2006 (2006)

23. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. https://www.
w3.org/TR/rdf-sparql-query/ (2008), w3C Recommendation 15 January 2008

24. Robaldo, L., Batsakis, S., Calegari, R., et al.: Compliance checking on first-order knowl-
edge with conflicting and compensatory norms: a comparison among currently available
technologies. Artificial Intelligence and Law (2023)

25. Rohde, P.D., Iglesias, E., Vidal, M.E.: Shacl-acl: Access control with shacl. In: European
Semantic Web Conference (2023)

26. Uszok, A., Bradshaw, J., Jeffers, R., Suri, N., Hayes, P., Breedy, M., Bunch, L., Johnson,
M., Kulkarni, S., Lott, J.: Kaos policy and domain services: toward a description-logic
approach to policy representation, deconfliction, and enforcement. In: Proceedings POL-
ICY 2003. IEEE 4th International Workshop on Policies for Distributed Systems and
Networks (2003)

27. W3C Working Group: The open digital rights language (odrl). https://www.w3.org/
TR/odrl-model/ (2018)

